Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains

نویسندگان

چکیده

We show that ground state solutions to the nonlinear, fractional problem \begin{equation*} \begin{cases} (-\Delta)^{s} u + V(x) = f(x,u) & \text{in } \Omega, \\ 0 \R^N \setminus \end{cases} \end{equation*} on a bounded domain $\Omega \subset \R^N$, converge (along subsequence) in $L^2 (\Omega)$, under suitable conditions $f$ and $V$, solution of local as $s \to 1^-$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the uniqueness of ground states of non-local equations

We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.

متن کامل

On ground state of non local Schrödinger operators . ∗

We study a ground state of a non local Schrödinger operator associated with an evolution equation for the density of population in the stochastic contact model in continuum with inhomogeneous mortality rates. We found a new effect in this model, when even in the high dimensional case the existence of a small positive perturbation of a special form (so-called, small paradise) implies the appeara...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 2021

ISSN: ['1230-3429']

DOI: https://doi.org/10.12775/tmna.2020.038